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Some Investigations Relating to
the Elastostatics of a Tapered Tube

by
Barry Bernstein

1. Introduction
{

The problem of elastostatics of a tapered tube is one for

which one sea{ches fhe literature in vain. The problem seems
to be close to that of a cylindrical tube, but this appearance
is quite deceptive. Several singularities appear in the
tapered tube which do not in the cylindrical tube. Furthermore,
in a coordinate system appropriate to the cylindrical tube,
separation of variables is possible. Not so with the tapered
tube. In this report we shall explore some approaches to the
problem. No approach that we shall present has at this time
shown itself to be the clear way to proceed. However, some

of them may have some bromise.

After an introduction to the problem, we shall discuss
sbme methods found in the literature. Then we shall present
some new exploratory results. Although we cannot be conclusive
at this time, we hope that we have opened some possibilities
for future development.

References are in the annotated biblicgraphy, Section 8.

Special List of Symbols:

Because we are quoting from different sources which
use the same symbols in different ways, and since we wish,
with only, perhaps, reasonable modification that the reader

be able to recognize the symbols in the.quoted sources,'we



cannot be completely consistent in using a symbol in only one

way in this report.

For this reason, we have compiled a list

of symbols here with the different uses of the same symbol

explained. Symbols are listed roughly in the order in which

they appear in the text, except that all listings of different

uses of the same symbol appear together. If the reader will

refer to this list, confusion will be avoided.

Symbol -
v

v
Ve
R,®,2Z

m

Um

72

3

T=8+in

¢ M

T,u,v

Uses

potential function (section 2)

a solution of (28) with m=1 (section 7)
constants (section 2)

Fourier component of potential (section 2)
cylindrical coordinates

an integer

reduced potential (section 2)

defined by equation (4)

coordinates for the tapered tube (section 2)
(essentially & and n of section 2 are the
Niven coordinates p and 6 of section 5)

characteristic coordinates (sections 5,6)

the distance of the intersection of the
inner and outer surface of the tapered tube
from the axis

separation functions (equation 6)
some arbitrary function (section 6)

the distance from the singularity in Zak's
coordinate system (section 3) except that
Zak takes ¢ =1, this is the same as the
Niven coordinate r of section 5




[}

r,0,8

H

for%o
S0 Mo

F(a, 5':7:2)

Py,P,

X,Y

a Niven coordinate (sections 5,6,7) in
which p = inr

Zak's angular coordinate (section 3). The -
same as the Niven coordinate 6 (sections 5,6,7)

Southwell potentials (section 3)
gamma function (section 4)

a curve (section 6)

a separation function (section 3)

a constant (section 3)

the taper angle (see figure)

a function (equation 7)

Cartesian coordinates

defined by equation (23) (section 6)

same as Vm, but in Hein's notation
self explanatory - (equation 9)
Niven coordinates (section 5)

/2 - 8

some special coordinates (equation 15

~and following equation)

some constant coefficients (equation 17)

defined by equation (18)

.characteristic function (section 6)

Niven coordinates of a given point (section 6)

characteristic coordinates of a given point
(section 6)

hypergeometric function (section 6)

points of intersection of characteristics
with curve

as defined in the equation following (25)
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Q as defined in equation (27)

U ’ as in equation (28) - same as UT

fk(z) functions to be determined (equation 29)

P an index (section 7)

S5 . constants to be determined (section 7)

n an integer (equation 34)

h(n) the greatest integer in n/2 (section 7)

bj . coefficients to be determined (equation 39)

2. The Natﬁre of the Problem

That the problem of elastostatics hangs on the study of
Laplace's equation is well known. A review of solutions of
such problems in terms of poténtial functions is giQen by
Green and Zerna, gection (5,6) [13]. If one could handle
Laplace's equation for the tapered tube, then elastostatic
problems would be accessible.

The first effort, then, that seems reasonable is to see
if separation of variables is possible. We turn, then, to the
work by Snow [1]. We consider here chapter IX, p. 228 of this
work.

In cylindrical coordinates R, Z, ®, we have for Laplace's

equation for a potential V

3¥v 3%y 1av 1 3
— 4 4= = 4 =5 =—==0. (1)
32 3722 ROIR R 3@

From equation (1), we may immediately separate out the
angular coordinate ® by writing V in a Fourier series in ®.

Indeed, Snow writes



Y

V=0Cy+ CZ+ (Cy + C5Z) 4nR

0

L m
+ ;ZJ—OV (R,Z)cosm (® - @m)

vhere Cq, Cy, C,, C5 and C)m are constants. The coefficient
VI satisfies

32vR BZVm Ve _ m2 Ve

1
2 " w RaR ®
Or, putting
1
y® R 2P

in equation (2) one obtains an equation for the reduced

potential U®, namely

2
szm+ERTmUm=O (3)
where ‘
2 32 3 |
V =g{-§+a—'z§. (4)

Now if one looks at the R-Z plane one sees that the trace
on this plane of a tapered region can be represented as a wedge,
one side of- which is parallel to the Z-axis atlsome distance,
say, ¢, from the axis, and créssing the other side at, say,
the Z-axis at an angle « (see;figure), which we call the ,

taper angle. A conformal mapping, then, from the Z + iR plane

into the plane of T=124 in given by

= 10g(z + R - iC)
gives for (3) ‘



28
72 ym e L _ 2} u? - o
"G Feing)? (3o ) 0 (5)

Now equation (5) is an equation in &, %, which are
natural coordinates for the tapered tube. Indeed, in this
coordinate system, the surfaces of the tube become & = O and
C = @, One may say more: This is essentially the only ortho-
gonal coordinate system in which the surfaces of the tube
become coordinate surfaces for any value of a.

We now ask the question whether or not one may find

solutions of the\form

VE = (&, pul)ivin) (6)

where T-is to be found. The answer is given by Snow (pp. 252-

253). It appears that the answer is no, since

32 e2£ _ _ 6e3acosq(1-+eecosq)
aan'(an+eesinQ)2 ¢

£0

(a+e sinq)2
which, by application of Snow's result to our equation implies
that separation of variables, even to within a known factor T,
is not possible for the coordinate system (& ,7).

- Techniques of separation of variables, with all their

ramifications, then fail. Other techniqﬁes must then be sought.

Ahd a look at some of these is then our task.

3. The Work of Zak

Here we shall discuss a technique used by Zak for solving
a problem of a cylinder with stress singularities. The method
happens to involve the Southwell potentials [14], but the

N

10
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essential feature of it is the method of obtaining a sequence
of functions which approach a solution.

Zak used a coordinate system which is essentially that
developed in the previous section and, indeed, is equivalent
to Niven's coordinates (section 5). If we replace & by the
letter P and Q by the letter g, we shall have the coordinate
system which he uses. In this section we shall adhere to Zak's
notation. However, the same letter P will be used differently
elsewhere in this report, so caution on the part of the reader
is urged. Please refer to the list of symbols. If referred
to the tapered tube, Zak's coordinates are the Niven coordinates
ﬁormalized so that c=1.

The Southwell potentials as modified by Zak satisfy the

equatioﬁs
320 130 , 80 _
ar° R 3 | 3z2
3% 1ar  ¥Pr _3%a
3R  Roar  az2  3z?

in cylindrical coordinates. After expressing these equations
in terms of his P and ¢, Zak seeks a solution for, say, Ll in

the -form
w0
= AP p
Q=3 pMTEE)

and obtains a sequence of equations

1



-1
F, + (a+p)? Fp, - sing { Zéo(m +m)(sinp')p'm'l Fo }

p=1
_ p-m-1 !
cosd {mgo(siln;zf) F, }

s0 that each function Fp depends on the previous ones. A
similar technique is applied to r. _

.It is not difficult to see that Zak's technique could
readily be applied to the tapered tube problem: The proper
coordinate form and the technique are already developed.

At the time of writing of this report, we feel that Zak's
method may be the most promising where it can be applied. It

appears to have two disadvantages. Zak expands a term as

o
T 20

which has as its domain of convergence a reglon near F::O.
(This region was of interest for the study of a singularity
at P::O.) _
For the tépered tube it may be of interest if one limits
oneself to regions where H)sinﬁl < 1, but thisjmeans that
the -radial length allowed is limited by the angle of taper.
For example, for a taper angle of 2°, the expansion is
valid for ? up to about 28 (distance from singularity about
28 times the quantity C in Ni@en coordinates) and convergence
would probably be slow if F were near 28.

Although we do not see how to do it at present, it may

be possible to apply Zak's technique to a far away region.

12



But the trouble at the moment is that as one goes toward
larger P there are points closer and closer to the surface
g=0 at which (1 - P sinp’)'l becomes infinite.

The second disadvantage which may be minor is that one
does not deal with a segquence of exact solutions. However,
this would not necessarily impair its usefulness where con-
vergence is rapid enough. Nevertheless, in the broad study of

the guestion, ‘a search for exact solutions should be made. If

problem, they might or might not provide a better method than
that of Zak in some given situation. In sections 6 and 7 we

repoft on a search for such solutions.

4, Integral Equations

The method of integral equations rests on the representa-
tion of the solution of Laplace's equation as an integral. A
review of such integral representations is given by Temple [7],
who contends that the culmination of this work is in Wﬁittaker's

result that potential functions which are regular near the

2T
5 f(z+ixcosBf+iysing,p)dg. (7)
O .

Basically the method of integral equations consists of setting
up equations for the unknown Ffunction in an integral expression
such as (7). 'These equations are based on the boundary

conditions.



A review of the use of the method of integral equations
is given by Heins [2], who makes use of the Poisson integral

representation: For a function # (R,Z) satisfying

2 2 2
B§n+%a§n+azn_n:n=o’ (&)
aaz BR _az R

(*)

which is the equation satisfied by a Fourier component

cC 5
§n or §n of

.

. o0
8(R,f,2) = 2,(R,2) + 21 8°(R;Z) cosng
n=

(s 0]
+ ngl ;f’l_(n,z) sinn g (9)

of an harmonic function &, one obtains

T
Un(R,Z) = F:él;l+f}'zn+ %) g U, (0,z+1ir cos‘l’)sinan"{’d’{’
(10)
where
RU_ = & . (11)

Now the validity of the Poisson Integral Representation
(10) hangs upon the regularity of the solution on the Z axis.
Indeed the assumption of such regularity is stated explicitly
by Heins (p. 789) and the problems solved (e.g. a charged

disc, or a lems, with axis along the Z-axis) do not violate

* Note Equation (8) is the same as equatlon (2) using Heins'®
notation instead of Snow's.

14



this condition. Other work which we have found so far [9, 10,
11, 12] does not seem to violate this condition.

We must caution that we have not at the time of writing
of this report fully digested the question of whether regularity
on the Z-axis 1s absolutely crucial to whether or not the
problem of the tapered tube is amenable to a Poisson Integral
type analysis. However, the Z-axis is outside the domain of
required validity of solutions to such problems. So there is
no reason to expect that the Poisson Integral will give the
answer. On the other hand, neither can one assert at this
point that it will not figure in a2 method of solving the tapered
tube problem. Indeed, perhaps we need a solution valid outside
the inner surface as well as a solution valid inside the outer
sﬁrfaceeof the tapered tube, so that their region of common
validity will be as desired.

Another method which we feel needs further exp;oration
is that of Snow [1], Chapter IX. Again, we feel at the time
of writing of this report that we have not yet seen through
the method well enough to be certain that it will apply in
whole or in part to the tapered tube. The difficulty at the
axis arises in trying to map the R-5 plane into the wedge-
region which is that of the tapered tube on the R-Z plane
without getting into the same type of difficulties with the

axis. However

for reasons similar to those stated in

con-
nection with the Poisson Integral, we feel that the matter is
not at all settled at this time and that we should, indeed,

like to consider it further.

15
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Nevertheless, in order to seek integral equation solutions

- appropriate to the tapered tube, it would be nice to have an

integral representation which is tailored to hold in the ﬁroper
region. To this end, we have carried out an investigation
based on the theory of characteristics. It may seém odd to

do this today, but in niﬁeteenth century work, the relation of
the wave equation to Laplace's eguation through the use of
complex characteristics was well accepted. We shall present

these results as soon as we have discussed the work of Niven.

5. The Work of Niven

A coordinate system appropriate to the tapered tube was

treated by Niven [4]. Indeed, he defines a coordinate system

r, 6, 8 by
x = {(C +r cos%)cos;d
y = (C +r cos8)sing
2 = rsin®

(where the tilda is our notation).
We find it more convenient to deal with the complement

of ©. Thus, we shall interchange sinB and cos6 to write

x = (C +r sinB)cosg
y = (C +rsind)sing .
Z = rcose

and, since these differ so trivially from Niven's coordinates,
we shall call these Niven coordinates also. It is clear then.
that in the Niven coordinates the surfaces of the tapered tube

with taper angle « are simply 6=0 and 6= «.

16
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r=ef
81
¥
" T
c
l _

The trace of the outer and inner surfaces of the tapered tube on the R-Z plane.
The taper angle is a. The Niven coordinates (r,6) are shown.



Niven then presented a form of Laplace's equation in

these coordinates, namely

l1“(c +1 cos8) o, % -?—,: (¢ +r cosd) 8y
or or 3o Qe
- 2
+ r ' 0.

c + 1 cos® Bp’?

It is clear that by making the substitution 6 = /2 - 8, one

. gets instead

-lr (¢ +r 8ind6) ov ., %.- -a—(c + T 5ind) v
or or 98 98

r 32V

* z
‘c +rsin® ?f

= 0.

Niven then writes this equation in terms of F = gnr for
the case where V is independent of g. We shall write instead
the equation in the general case, namely

3 (¢ + ePsine) v, 3 (c + ePsine) v

BP Be 0o 08

e3P 22y _
¢ + eV'sine 3¢2

+ 0.

These Niven coordinates have, in fact, been met before
in this report and indeed ? and O are respectively the ¢ and
7 bf section 2. 1In this section, however, we shall use ¢&
and i for other coordinates. .

Niven writes Laplace's equation for the case where V is

independent of £ in terms of (characteristic) coordinates

+i'5
P,

E=¢c+e q =c + eP—ie (13)

18



as

%Y av . av
2 oy L2, 8 _ o 14
(¢+q)azaq+aa+aq (24)

To him this is Jjust a step in a process which in fact
doés not seem to lead us very far. Indeed the next step is
to put . '
E+M=ce' ‘ (15a)
E-n=t | (15b)

and arrive at

2 2
g-emg_.g:o (15)
v .

which does indeed admit separation of variables solutions.

However, the simple observation that

v = logZR, t = 2iZ

shows that indeed we are merely back in a slightly unfamiliar
form to ¢ylindrical coordinates R and Z and that the separation
of variables will yield the familiar Bessel functions.

The rest of Niven's results are of mathematical interest,
but do not help us with our tapered tube problem. He does
indeed obtain some closed form solutions, but they do not have
the proper équipoteﬁtial surfaces appropriate to the tapered
tube problem. Indeed, his method is to seek solutions of the

form
m "~
25 A " cosn® (16)
=

where m depends on n in some way, and then cleverly to chocse

some such dependence which allows the series to yield a solution.

19



The method is interesting, but it probably lacks the generality
which we need in order to obtain enough solutions that we can
handle the tapered tube problem. Indeed, in section 7 below
we shall present solutions containing types of terms not found
in (16).

In closing, we point out that these type of coordinates
were used by Riemann [7] to solve a problem of an anchor ring.
Although Riemann's paper is very pretty, again it contains no
hint how to seek solutions with equipotential surfaces appro-

priate to the tapered tube.

6. An Integral Representation of the Sclution to Laplace's
Equation in Niven's Coordinates

Consider, now, the form of the equation for the potential
V(m>(R,Z) in polar coordinates (R, ® ) as given by equation (2).
We shall obtain formally an integral representation of the

solution to this equation in the Niven coordinates (?,e), where

R=c + e sind (17a)

z = efcose. , (17v)

To begin with, let us put

vim) | RCW, | (18)

L

(where, of course, W will alsc depend on m, but we find it
notationally simpler not to write it explicitly). We obtain,
then for (2)

VoW + gﬂﬁl v 0.

(19)
dR

Now let us change to coordinates &, N, where

20



It

" &€=R+1iZ=C + ieP_ie (20a)

c - 1eP*i8, (20b)

n =R - 12

(Note that (20a) and (20b) follow from (17) and (13).)
We then obtain for (19)

2%, 2m4l _1 Fm+éﬂy=a (20)

atan 2 E+m\dE  Bn
Now (20)2is in characteristic form, albeit the char-
acteristics are complex, either in the R, Z coordinates or the
P’ © coordinates. It is clear, then, that the characteristics
are given by

constant (21a)

9-+ie
and -

i

. ?-ie constant. (21ib)

Now equation (20) is of the form given in Sommerfeld's

book [15], section 11, in relation to a hydrodynamic example

adjoint equation

ey (-

for each point PO(PO’GO) such that H=1 at P and
oH 2m+1

-=————-H-=20
oL 2(&+n)
and
OH _ 2m+l H=o0
an  2(g + M)

on the characteristics Q const and & = const respectively

which pass through fO’ 90. Riemann solved this problem. The

21



solution for our case is

o To)
0o 1-2m  1+2m
H= (-—E-:-T) F(T’T’ 1, Z) . (22)
where |
F(a,B,Y,z) is the hypergeometric function
2
F(a,8,¥,z)= 1 « %E Z o+ “(“;%‘),ﬂf;l) e
and o
-1
50 = c +iePO 0 (24a)
i
To=c-1e0 O (24b)

To obtain an integral form of the solution of (20}, then
we apply the relation (7) p.(54) of Sommerfeld [15], which we

write .in the form

W(p18p) = J(xaé - Yay) + -]z'(WH)Pl + %-:;(‘.\rH)P2 (25)

' r
vhere I is a portion of a curve on which data are given,
Pl and P, are the intersections of the curve with the respective
characteristics through (PO’GO)’ the integration is taken to be
along [ from P, to P,. (Here we must be careful that P, be
the point where 1 = qo intersects [' and P2 is the point
where & = 50 intersects ['.) Also

22



X=%(Hﬂ_wéﬁ) + 2m+]1

on~ " an ) T2
_ oW oH 2m+1
Y"?(Hag Waf) T2

We wish now to evaluate the right hand side of (25),
where we shall take for [7 +the curve =0, which corresponds
to that surface of the tapered tube which is parallel to the

axis. We calcdulate first for any function u

.QE __._e—P+ie ~— i@E + ‘ﬁl.
- ox 2 BP 006

du e'P'is[ Bu au:l

dy 2 ‘3 06

a€ =i e?-ie(ds) - 1de)
dn =-i eP+ie(dP +1ido).

Then we obtain from (25) and the relations following it

90+i 60
w(?o,eo) =i X Q(?,O)do +
Po-1 &g
%—(HW)(?O- 165,0) + 3(HW) (pg +1 8(,0) (26)
where
a(p,0) = [ %g-w gg] s 204 of Hw. (27)

Now (26) and (27) give an integral representation of
the solution. The limits PO- i 80 and 5')0+i 90 are of course
the (complex) values of P at which the characteristics (21la)

and (21b) through (FO’GO) intersect 8= 0.

23




We have been proceeding formally, but it is clear that
we must assume énalytic boundary data, for otherwise the
integrand will be path dependent.

We shall argue that the integrand Q(?,O) is real for real
values of ?. Assume this for the moment.

If we make the change of variable

P = Po +id
in the int‘egra:md, we get for the integral term
PN ' 0
- S Q(YO +ig) df = - j Q(fO + ig,0)dd
%o =%

%

.- S Q(?0 + id,0)dd.
0

By putting - g for g in the first integral on the right

hand side, we get for the integral term

%
o j [a(p + 14,0) + Qlp - 1,0)]af,
0

which, under our assumptions, becomes

%
-2 " ReQ(FO + ig,0)dg.
0

We obtain,then

w(f,e) =
e

My W, LW ouif
Re{xo[w =5 Hae+2 S ef*1P lag

+ H(? + iG,O)W(P + iG,O)}

24
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where the integrand is evaluated at (F-riﬁ,o). This is a form
of the integral representation of the solution.

Now let us look at the assumptions on Q. Firsp of all,
in order to be sure that our operations are legitimate, we
must assign analytic boundary data on W(F,O) and dW/06 at
(Y’O)' These must be as;igned so that they are real when P
is real. Next look at H. There is no problem of analyticity
of H. However, we shall check that H is real when 6 and ? are
real, so that it will also follow that 0H/96 will be real at
real (9,0){

We have from (20) and (24) that

& +M = 2(c + efsin o)

EO +Ng = 2(c + e?osineo)

(E-¢)(M=-10) = (ep-ie_ePd-iSO) (eP+i6 _ epo+ieo)

Now the last equation is the product of an expression with
that'of its complex cénjugate and is thus real. From (23), it
then follows that z is real for real (P,e), and hence, from
(22) and (23) we see that H is real for real (?,e).

This establishes, at least formally, the integral repre-

sentation.

7. Some Polynomial and Series Sclutions

Although it is not possible to separate variables in the
Niven coordinates, or in an equivalent coordinate system, it
is possible to obtain some exact solutions of more generality
than those given by Niven. To this end let us start with

equation (3) for the reduced potential U(m) in cylindrical
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coordinates. We drop the superscript m for notational con-
venience. We have, then
R®VAU+ (F - n®)U = 0. (28)

We substitute for U the series
Jo | ' .
u= 5 P g (2) (29)
k=0

where the index p and the functions £,(Z) are to be determined.

Substitution of (28) into (29) yields

[p(p-1) +3-02)2,(2) + [(p+1)p + - m")E, (2)R

+ 2

00
k=

2{[(p+k)(p+k-1) +-02)5,(2) + £, ,(2)} RE = 0. (30)

Setting the coefficient of fo(Z) to zero, we get the
indicial equation

2
(p-%) -m?=0

or
b=} am

We choose the larger root p::%-rm of the indicial equation.
(As with Bessel functions, the smaller root will give nothing
new. ) We obtain by substitution into (30)

(2m+2)£,(2) = O (31)

k(2m+k)fk(2) + f; 2(2) = 0. - (32)

Equations (31) and (32) taken together tell us that
fk(Z) =0 for odd k

and that for even k, k = 2j, we have
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1t
fo(3-1

f2 7 223(3+m) (33)

This gives us a method of obtaining solutions, since we
can now pick fo(GD) as we wish and make use 6f the recursion
relation (32). We shall explore some of the consequences of
this procedure.

We see, in particular, from (33) that if we choose fj to
be a polynomial in Z, then the number of terms in the expansion
(29) will be fiﬁite. The solution will be a squaré root of R

times a polynomial in R and Z. We shall investigate the case
£5(2) = 2, n=0,1,2,... (34)

From these one can, in fact, by addition and multiplication
by constants, arrive at the results for any choice of a poly-
nomial for fo.

Now (34) and (33) tell us that

@ - n-2j
fzj = ¢y X (35)

for some C5 to be determined. If we put (35) into (33) we

obtain

o o (n-2§+2)(n-2341) . 6
i 23 (gom) 9 o

The solution to the recursion relation (36) is

ntm
223 31(3+m)t (n=23)1

cy = (-1)9 <q . : (37)

where j = 0,1,...,n/2 if n is even and j = 0,1,...,(n-1)/2 if

n is odd.

A
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If we take con'.m: = 1, we obtain then a solution

1 _h{n) J }
7+ (~1) r2dzn-2J (38)
U=R" 420 229(n-23)1 3t (ms+3)!

where h(n) = n/2 if n is even and h(n) = (n-1)/2 if n is odd.
Equation (38) gives, then, a square root of R times a

!
polynomial in R and Z. Now returning to Niven coordinates,

we obtain

+1'
g(rcose)n

h(n) 3 .
ﬁ (-1) Cseco+tan)?d,

m
U= (c+r sind) \
J=0 223(n-2j):jz(n+j)1

Since there are finitely many terms, there is no problem

of convergence.
Another set of exact solutions can be generated by writing

fO(Z) =z"

where n is an integer. We obtain, then, by the same process

1 : :
50 @ (-1)9 (ne23-1)t (5)23 _
350 229 51 (j+m)! £

According to the ratio test, this series will converge

for [-I%I < 1.
In the Niven coordinates, then we obtain

+l m ] .
Y (-1) (n+2j-1) (Sseco+tans)?s

1
U=r""(c+r sine)z (<
J=0 22J 33(J+m)

which converges when

c+r secB< rcosé (1st quadrant)
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c
¢cos6 - sinB °

or r >

Now let us consider a taper angle a < -g, so that we are
concerned with, say,

0¢8¢a

~ '

'Iheﬁ cosB - 8in® is decreasing with 6, since

-d%(cose - 8inB®) = -sind - coso.
Thus

.\

c < c 0
cosB - 831n6 ¥ cosd - s1ing’

Y
<
"~
]

Therefore convergence in the wedge region will occur for

C

r > cosX - sina

which means that the solution will be valid away from the
singularity where the outer and inner surface of the tapered
tube meet. This is thé sort of region that figures in a gun
tube.

For the case of m=0, we have also succeeded in finding
an additional solution inveolving a logarithm and a polynomial.
We seek éo:[.utions to (28) in the form

']2-"'23 n-25

s
U=V4nR+ ) D.R YA

20 %3 (39)

where V satisfies (28) with m=0. We obtain

0 - RV + § = [R2V2y . Tmr

1 ..
AV © 2 1 5+2) 523

+ 2R v, (43 -+ ) b.*R 2n-ed |
3R J'go J H)J
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We take for V the solution (38) which we write as

1 .
h(n) .
V = R2 cj_Rsz 23,
J=0
vhere cy is given by (37). After some straightforward manipu-

lation we obtain the recursion relation

1 A : : s _
by=- ZEE[(n-23+2)(n-23+l)bj_l-+AJCj], j=1,2,... (40)

'

We note that since there are only a finite number of non-zero

c., and since the coefficient of bj—l in (40) becomes zeroc for

j’
j=(m+2)/2 or j=(n+l)/2 (depending on whether n is even or
odd) there are only a finite number of non-zero bj and so both
V and the summation term in (39) become polynomials.

These solutions, then, in Niven coordinates become

1

(n+ %) hin+2) .

r 2y -;-i-+ siné > [%sece+tan9]23[cj.8n(c+r sin@) + bj]
J=0

Some thought must be given to the best way to assemble

these solutions in order to satisfy given boundary conditions.
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tion that they convey is also in the text, often in more detail.

[1] Snow, C. Hypergeometric and Legendre Functions with
Application to Integral Equations of Potential Theory,
U.S. Department of Commerce, National Bureau of

Standards, Applied Mathematics Series 19 (1952).

30



g

This work seems very rich and may well hold the clue to
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9. Conclusion
The problem of the best way to proceed to obtain analytical
solutions of the tapered tube problem remains unresolved at the
moment. We feel that some progress has been made in developing
exact solutions in the appropriate coordinate system. Perhaps
a method of assembling these solutions to fit boundary data
would be fruitful. Perhaps a formulation in intggral equation
form, would be the way to proceed. Again we feel that some
progress has been made by our integral representation of
section 6. And of course Zak's basic idea could be developed
further. Indeed, for small taper anglés it could be useful
not too far from the intersection of the inner and outer sur-
faces as it stands. But it would be better to try to devélop
the idea of the method for points far from this intersection.

We have, indeed, made a stab at the problem and hope that our
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contributions will be the first step in the solution. However,

~at this point, we feel that much remains to be done.
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